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ABSTRACT 

Tracking multiple targets in a cluttered environment is extremely difficult. 

Traditional approaches generally use simple techniques that combine gating with some 

form of nearest neighbor association to reduce the effects of clutter. When clutter 

densities increase, these traditional algorithms fail to perform well. To counter this 

problem, the multi-hypothesis tracking (MHT) algorithm was developed. This approach 

enumerates almost every conceivable combination of measurements to determine the 

most likely tracks. This process quickly becomes very complex and requires vast 

amounts of memory in order to store all of the possible tracks. 

To avoid this complexity, more sophisticated single hypothesis data association 

techniques have been developed, such as the probabilistic data association filter (PDAF). 

These algorithms have enjoyed some success, but do not take advantage of any future 

data to help clarify ambiguous situations. 

On the other hand, the probabilistic multi-hypothesis tracking (PMHT) algorithm, 

proposed by Streit and Luginbuhl in 1995, attempts to use the best aspects of the MHT 

and the PDAF. In the PMHT algorithm, data is processed in batches, thereby using 

information from before and after each measurement to determine the likelihood of each 

measurement-to-track association. Furthermore, like the PDAF, it does not attempt to 

make hard assignments or enumerate all possible combinations, but instead associates 

each measurement with each track based upon its probability of association. 



Actual performance and initialization of the PMHT algorithm in the presence of 

significant clutter has not been adequately researched. This study focuses on the 

performance of the PMHT algorithm in dense clutter and the initialization thereof. In 

addition, the effectiveness of measurement attribute data is analyzed, especially as it 

relates to algorithm initialization. Further, it compares the performance of this algorithm 

to the nearest neighbor, MHT, and PDAF. 
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I. INTRODUCTION 

A.       BACKGROUND 

Tracking multiple targets in a cluttered environment, such as is found in littoral 

waters, is an extremely difficult task. This is due to the added noise which is caused by 

the closeness of the ocean floor to the surface. Furthermore, in littoral waters, there are 

quite often various man-made structures, which can cause the addition of false target 

sonar returns. In this environment, targets typically operate at speeds between 2-10 

knots. In order to maintain steerage control, submarines find it difficult to operate below 

this minimum velocity, and above 10 knots, diesel submarines will produce an obvious 

amount of noise. 

Traditional approaches used to solve the cluttered environment tracking problem 

have typically employed simple techniques to determine what is a true measurement from 

a target and what is not. They accomplish this by a combination of gating (discarding 

measurements) and some form of nearest neighbor association (picking the closest 

measurement to the current target position estimate, where "closest" is defined by a 

weighted distance). In the open ocean, where the water is deep, traditional approaches 

perform well because the problem of dense clutter is not encountered. However, in 

littoral waters, where clutter densities increase, these traditional algorithms fail to yield 

reliable results. In order to solve the clutter problem, two algorithms were developed— 



the multi-hypothesis tracking (MHT) algorithm and the probabilistic data association 

filter (PDAF). 

1. The Multi-Hypothesis Tracker (MHT) 

The MHT [Ref. 5] enumerates almost all of the possible combinations of 

measurement-to-track assignments. Then from all of these possibilities, the most likely is 

selected as the best estimate of the track. The problem quickly becomes extremely 

complex as the data combinations are growing exponentially as each new measurement 

batch is received. This requires a huge amount of memory and computing power. 

Furthermore, as the number of possibilities increase, some form of pruning must be done 

in order to keep the number of hypotheses within limits. 

2. The Probabilistic Data Association Filter (PDAF) 

On the other hand, the PDAF [Ref. 4] does not make hard measurement-to-track 

assignments, but rather weights each measurement based upon its likelihood of 

association with a track. This algorithm has some advantages in its simplicity, especially 

in computational and storage costs. However, it only gets one chance to weight the data 

correctly. Therefore, this algorithm does not take advantage of any future data before 

making a decision on the most likely true measurement. 

B.        A NEW APPROACH 

In 1995, Streit and Luginbuhl of the Naval Undersea Warfare Center proposed a 

new algorithm called the probabilistic multi-hypothesis tracking (PMHT) algorithm [Ref. 

1]. Like the MHT, this algorithm processes data in batches, thereby giving it the 
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advantage of future data before decisions are made. However, the PMHT does not 

attempt to enumerate all possible combinations, but rather weights the measurements 

based on the likelihood of each measurement being the true measurement. Therefore, like 

the PDAF, this new algorithm employs an empirical, Bayesian data association to score 

the measurements in order to determine the likely true measurement centroid. This 

technique can be significantly faster than the MHT, but will require more time to 

compute than the PDAF. This research focuses on two primary areas of the PMHT that 

have yet to be studied carefully, that is, the actual performance of the algorithm in the 

presence of dense clutter and the initialization thereof. 

Furthermore, this thesis also addresses the performance of the PMHT as compared 

to the traditional tracking algorithms—the MHT and PDAF. In addition, measurement 

attribute data is explored in conjunction with the PMHT algorithm. 

C.        THESIS OUTLINE 

This thesis is divided into the following chapters: Chapter II describes the theory 

and derivation behind the PMHT algorithm. Chapter III lays out the explicit algorithm as 

it has been implemented in this study. Chapter IV covers the difficulty of initializing this 

algorithm in the presence of clutter, and how the initialization was eventually 

accomplished. Chapter V shows the results of this implementation of the PMHT 

algorithm and compares these results to other tracking algorithms, i.e., the nearest 

neighbor, PDAF, and MHT. Portions of these results were published and presented at the 

Asilomar Conference on Signals, Systems, and Computers in November of 1996 [Ref. 2]. 
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Finally. Chapter VI summarizes this study and offers suggestions about areas in which 

further research misht be conducted. 



II. THEORETICAL BASIS OF THE PMHT ALGORITHM 

A.       TARGET MOTION MODEL 

In this research, measurements are obtained from a sensor in batches at a set time 

interval. The PMHT algorithm takes all of the received measurements and computes an 

optimal estimate for each target track. The targets are assumed to be independent with 

linear Gaussian statistics of the following form: 

x,+A,=<l>x,+w, (2.1) 

where x is the state-space vector containing the x position, x velocity, y position, and y 

velocity, respectively. O is the following discrete state-space matrix: 

0 = 

1 At   0 0" 

0 1     0 0 

0 0    1 At 

0 0    0 1 _ 

(2.2) 

Further, wt is white Gaussian noise with known covariance matrix Q, which is given by: 

Q = q 

'At3/ 3 At2/ 2 

At212 At 

0 0 

0 0       At2 12 

0 0 

0 0 

At3/ 3   At2 12 

At 

(2.3) 

where At is the time in between scans, and q is a parameter which reflects the 

maneuvering behavior of the target. This parameter is used to adjust the performance of 

the Kaiman Filter. Usually for fairly straight tracks, q is set to a small but nonzero value 

in order to prevent covariance collapse in the Kaiman algorithm. 



B.        MEASUREMENT MODEL 

The measurement model in this research assumes that a sensor returns range and 

bearing information which contains additive Gaussian noise. Therefore, each 

measurement pair is of the following form: 

z„ = 
<t>r, 

+ e, (2.4) 

where the subscript r denotes the index for measurements within a scan (r = 1,...,«/), and 

the subscript t specifies the discrete time index (/ = 0,.. .,7). Hence, there are nt total 

measurements taken at time /, and there are T total scan times in the scenario. The error 

vector is additive Gaussian noise with zero mean and covariance given by: 

R 
or,2      0 

0     G] 
(2.5) 

For this research. ar = 100 meters and a, = 3 degrees was assumed. In this case, with the 

coordinates in polar form, the measurement covariance matrix is the same for all 

measurements at all time scans. However, if the measurements were in another 

coordinate system (e.g., Cartesian) then each measurement would have its own 

covariance matrix. 

C.        COORDINATE CONVERSION 

The Kaiman Smoother requires a linear state equation and a linear measurement 

equation. The bearing measurement in polar coordinates is nonlinear. Therefore, in order 

to use these measurements in the classical Kaiman Smoother, it is necessary to convert 



them into Cartesian coordinates. Lerro and Bar-Shalom have demonstrated that 

converting range-bearing measurements into Cartesian space prior to implementing the 

Kaiman algorithm is superior to utilizing the raw range-bearing measurements directly in 

the Extended Kaiman algorithm [Ref. 3]. 

Lerro and Bar-Shalom recommend converting the measurements to Cartesian 

coordinates using their "debiased" equations. These equations convert both the 

measurement itself and its associated covariance matrix. The following are the debiased 

measurement conversions: 

z« = 
n rr/cos(^)[l-(e^2-e^/2)] 

rr,sin(^)[l-(e^-e^2/2)]_ 
(2.6) 

Furthermore, the corresponding covariance matrix is given by: 

All Rn 
It _Rl2 R22 

(2.7) 

where, 

Ru = rr
2e" ^ [cos2^., (cosh2cr^ - cosher2) + sin2 <j>n (sinh2crj - sinner2)] 

+ a1
rQ
la'" [cosV,, (2cosh2crJ - coshcrj) + sin2 $„ (2sinh2crj - sinhcr2)] 

-4CT; 
i?12 = sin^cos^e"^ [al

r + # + al
T )(1 - ea*)] 

.2„-2cr. R22 - r„ e"  * [sin $rl (cosh2cr^ - cosher^) + cos (j)rl (sinh2cr^ - sinhcr^)] 

.2 „"2a, + are   * [sin $n (2cosh2cr^ - cosher^) + cos 0rl (2 sinh2cr^ - sinner^)] 

With these equations, there is a different covariance matrix for each measurement at each 

different time scan. 



D. ITERATIONS 

Each iteration of the PMHT algorithm begins with a set of track position estimates 

and a set of measurement probabilities. Then the weights are computed and centroids 

formed. These centroids are then used in the Kaiman Smoother to update the track 

position estimates. With the new estimates, a new set of weights is computed. These 

weights will be similar to the previous weights, but they will be different because of the 

new estimates. After some iterations, the weights will converge. When convergence is 

reached, the current estimate is theoretically the optimal estimate for a given track. 

E. WEIGHTING THE MEASUREMENTS 

In this research, two different models were used to assign weights to 

measurements. The first is the target track model, which uses a normal distribution to 

assign weights to measurements. The second is the clutter model, which uses a constant 

value to assign weights to the measurements. 

1. Track Model 

Given the measurements and an initial estimate at each time scan, the PMHT uses 

a normal distribution between the estimate and each measurement to determine the value 

of the weight assigned to each measurement in a given scan. This weight specifies the 

likelihood that this measurement belongs to a particular track model. From these weights 

and measurements, a centroid is computed for each track model. The centroid is 

calculated by simply multiplying each measurement by its associated weight and then 

summing all of these together. 
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The weight calculated for each measurement is conditioned on the position of the 

estimate and its covariance matrix. If a given measurement is far from the estimate, it 

will get a low weight. On the other hand, if a measurement is near the estimate, it will 

receive a high weight. 

2.        Clutter Model 

Since uniform clutter is assumed for this research, the clutter weight is equal to a 

constant, which can be adjusted. The clutter weight was initially determined by 

calculating the area of interest for which measurements will be returned. The inverse of 

this area was then used as the starting point for the clutter weight value. For optimal 

performance, a clutter weight value an order of magnitude less than this value was used. 

F.        KALMAN SMOOTHING 

The estimates at each scan are linked together by the Kaiman Smoother. The 

centroids at each time scan are used as the "measurements" in the Kaiman Smoother. 

This produces a new set of estimates for each track model. The Kaiman Smoother is used 

so that all estimates are updated using all the available information from before and after 

each time scan. This produces the best estimate possible at each time scan. 

If the conventional Kaiman is used, then each measurement will have its own 

corresponding covariance matrix. This covariance matrix is used both in the Kaiman 

Smoothing step, as well as in the weighting step. This not only complicates the 

computations and requires more memory storage, but also causes both the position 

estimate and its associated covariance matrix to have to converge in the iteration process. 



On the other hand, if the Extended Kaiman is used, the same covariance matrix is 

used for all measurements at all time increments not only in computing the weights, but 

also in the smoothing process. This allows simplification of the computations, and 

during the iteration process, only the position estimate is being refined and convergence 

is more easily achieved. 
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III. THE PMHT ALGORITHM IN EXPLICIT FORM 

A.       THE BASIC ALGORITHM 

This algorithm is taken from Streit and Luginbuhl [Ref. 1] using the linear 

Gaussian case. In section B, I will discuss the modifications which were made to the 

original algorithm, initially. Then in section C, I will cover the modifications, which 

further improved the performance of the algorithm. 

1. Initialization 

Measurement probabilities, n(0) = {^} must be assigned so that^ > 0. It is 

not critical what values are assigned to these measurement probabilities because in the 

first iteration they will be recalculated. Moreover, they do not have an adverse effect 

before they are recomputed. The^ values specify the estimated probability that a 

measurement at scan t is assigned to target model m after i iterations of the PMHT 

algorithm. 

An initial target state (xfl ,x\°2,...,x^) for each time increment and each of the 

M target models must be assigned. My experience has shown that these initial estimates 

must be fairly accurate to ensure that the algorithm performs satisfactorily as clutter 

densities increase. 

In this paper, m specifies the target model {m - l,...,M); t specifies the discrete 

time index (/ = 0,...,7); r specifies the index for measurements within a scan (r = l,...,«t); 

and the superscript i specifies the iteration index (i = 0,1,...). 
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2.   Computation of the Weights 

For every target and measurement combination at each scan, a weight is 

computed. The value of the likelihood function (assuming normal distribution) evaluated 

at the error between the current estimated position and each measurement is used for the 

weight: 

,.'('+|) 
exnf-1/'01^"1 7U)) 

2n>/det(Z,J 
(3.1) 

where. 

w, ('-I) 
wTl) 

.v=] 

?('•) I«) ('■) z,w = z  - 7l' =7  - C X 

(3.2) 

(3.3) 

is the error between the current estimate and a measurement. Further, Z is the weighting 

matrix defined as: 

^,m=C,mP,„,C^+R/m (3.4) 

Here P,w is the covariance matrix associated with the target state estimate, and C,m is the 

measurement matrix defined as: 

C = 
10   0   0 

0   0    10 
(3.5) 

for the standard Kaiman algorithm. 
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3.        Calculation of the Measurement Centroids 

First, the mean measurement weight for each target model m at time t is defined 

as: 

«, 
w(l+1)=-LtwlM) (3.6) wml «,      , ,vmlr v        ' 

Next, the measurement centroid is computed as: 

2(01) = \ £ W('+Dz (3.7) 
"1 vvlm 

This measurement centroid will be used in the Kaiman Smoothing step below. 

4. Target Measurement Probabilities Update 

The next step before the Kaiman Smoother is to update the target measurement 

probabilites. This is computed as: 

^('+') = w(,:+1)^(;) (3.8) 
"7»i ml tm K        ' 

5. Target State Sequences Update 

The target state sequences are updated via the Kaiman Smoother using the 

measurement centroids as the inputs. First, the intermediate variables of the forward 

recursion are initialized as: 

y0,o=^ (3.9) 

Po|o=Po„, (3-10) 

Here with these dummy variables, the model m and iteration index / have been 

suppressed for notational simplicity. The forward recursion is defined for t = 0,1,...,7-1 

as: 
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P,+1!, =OP,„.,0T+Q (3.11) 

^t\   ~ ni + \ni*\jn*t + \\<Ci + \.m   "/ + l7r/!l.n,C, + lmP, + 1!,C, + lm +R, + 1„ 

y,+,:,M =<&$,, +G,+1[z,(;;.'i, -c,.,.m<i>yl(,] 

Then the updated target state estimate for model m at time / is: 

(3.12) 

(3.13) 

(3.14) 

I'm J IT (3.15) 

and the updated target state estimates for / = T-1,..., 1,0 are computed via the backward 

recursion as: 

^,, (3.16) x(,H) = v   +P d)TP"' 

The equations in this subsection make up a bank of M Kaiman Smoothers which can be 

run in parallel, although these filters are not independent because they are linked by the 

weights. In these equations, O is the same as was defined in (Eqn. 2.2). 

Therefore, a block diagram of the basic algorithm is shown below in Figure 3.1. 

The convergence block will be discussed in the next section. 

iterate 

Kaiman 
Smoother 

Figure 3.1. Basic PMHT 

14 



B.       INITIAL MODIFICATIONS 

Several modifications and additions are necessary in order for the PMHT 

algorithm to begin working. 

1. Clutter Weight Model 

First, there needs to be a model for clutter weights. Since uniform clutter is 

assumed for this problem, I used a clutter weight equal to a constant, which could be 

adjusted. Therefore, 

"Z+1)=P (3-17) 

was used for the clutter model and (Eqn. 3.1) was used for target track models. 

2. Convergence Criteria 

The basic algorithm does not specifically state how convergence is to be 

determined. In this research, convergence was measured by the rvalues. It would also 

be possible to test convergence through the weights. However, both approaches yield 

similar results and the rvalues are quicker to sum and compare. Therefore, initially 

convergence was achieved when 

Zlk?-^ <Kc>0 (3.18) 
»=0»i=l 

The parameter Kc is adjusted for optimal performance. If this number is set too 

high, then the algorithm will stop before it has fully converged to its best solution. On 

the other hand, if this number is set too low, then the algorithm might never be able to 

meet this criteria. Initially Kc was set to 10"4. Iterations are allowed to continue until 
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convergence is reached or the maximum limit is exceeded (100 iterations). I will refer to 

this convergence parameter as the stopping criteria in the sections below. 

3. Measurement Covariance 

Using the basic algorithm in Cartesian Coordinates requires that each 

measurement have its own associated covariance matrix. For the weighting equation 

(Eqn. 3.1). it is possible to use each measurement's associated covariance matrix. 

However, during the Kaiman Smoothing step, a covariance matrix is needed for each 

track at each time scan. Furthermore, since the measurement centroids are mixtures of 

the received measurements, there is not just one matrix for each track model at each scan. 

The following variations were investigated during this research: 

a. Weighted Covariance 

For this calculation, a weighted covariance matrix is obtained by a similar 

process as is used to obtain the measurement centroids. 

ft""l,^i«' (319) 
/     mir 

b. Closest Measurement 

The covariance matrix associated with the measurement which is closest to 

the current estimate is used. 

R!:'=R,r (3.20) 

c. Covariance of the Estimate 

Here, the covariance matrix is computed from the current estimated 

position by using the debiased equations (Eqn. 2.7). 
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Of these variations, the estimated covariance (Eqn. 3.21) has shown the 

most robustness and has provided the best overall results. Furthermore, it has been found 

that using this estimated covariance matrix not only in the Kaiman Smoother (Eqn. 3.12), 

but also in the computation of the weights (Eqn. 3.4), provided even better results. 

4. Distant Clutter 

It was found that if a measurement point was too far from the estimated position 

then the weight calculated was extremely small, and numerical instabilities would be 

encountered. Therefore, on a suggestion from Dr. Streit, any measurements beyond a 

Chi-squared cut-off value of 0.995 from the estimated track position have their weight set 

to a low constant value of 10"20, rather than using the actual weight from (Eqn. 3.1). 

5. Five Scan Batches 

The initialization process (to be discussed in Chapter IV) produces the initial 

estimates for the first five time scans. The PMHT algorithm is run on these five time 

scans until convergence is reached. Then the next five time scans are predicted, and the 

algorithm runs over the now 10 time scans, and so forth. This not only provides a more 

realistic approach to what might actually be implemented, but also allows the algorithm 

to only have to sort out five new points at a time. 

6. Speed Limit 

Since the targets of concern in this research have speeds of 2-10 knots, a 10 knot 

maximum speed is imposed when predicting ahead. The actual target estimates produced 
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by the PMHT algorithm are not limited and can converge to an estimate with any 

velocity. 

Therefore, a block diagram with these modifications is shown in Figure 3.2. 

iterate 

Initial 
iX0 and n; * 

AL/ 
Compute 
weights 
with min. 
value 

-> 

Form 
centroids 

■* 

Kaiman 
Smoother using 
est. covariance 

Predict next five 
points with a 10 knot 
maximum speed 

f 

Figure 3.2. Modified PMHT 

C.        FURTHER MODIFICATIONS 

The above modifications were sufficient in order for the PMHT algorithm to work 

well. With these modifications, the PMHT algorithm was able to perform better than the 

PDAF at clutter densities up to 3.33xl0"3 clutter points per square kilometer. This value 

for the clutter density appears to be low. However, the standard deviation for the range is 

+/-100 meters, and the standard deviation for the bearing is +/-3 degrees. Therefore, with 

these values in the measurement covariance matrix, this clutter density is fairly 

significant. 
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On the other hand, in order to increase the performance of the algorithm further, 

the following modifications were also implemented and found to be effective, especially 

for the higher clutter densities. 

1. Clutter Weight Model Inflation 

Adjusting the clutter weight model parameter r after the algorithm has sorted out 

the first 10 points has proven beneficial. That is, for the first 10 points, p is set to a value 

of 10"12, and then it is increased to a value of 10"10 for the rest of the batches. 

2. Extended Kaiman 

The numerical complications involved with the measurement covariance matrix 

led to trying the Extended Kaiman algorithm. As has been discussed, the classical 

Kaiman requires a different covariance matrix for each different point in the Cartesian 

Coordinates. On the other hand, if the Extended Kaiman is used, one measurement 

covariance matrix is used for all models at all time scans. Using this approach has shown 

some significant advantages which will be discussed in greater detail in Chapter V. 

Therefore, the changes necessary to implement the Extended Kaiman smoother 

are the following: 

a. Coordinate Conversion 

First, the innovations equation (Eqn. 3.3) must incorporate the coordinate 

conversion. 

where, 
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gOO = 
V^7 
atan 0) 

(3.23) 

The Measurement Matrix 

The Kaiman measurement matrix (Eqn. 3.5) will no longer be a constant 

matrix, but will have to be re-computed each time. 

■<(') _ 

'%(*%)]■ 
0^0 

0   4   0 
(3.24) 

The same modifications are also necessary for the smoothing step. 

Therefore, (Eqns. 3.11-3.16) will be changed accordingly. Another effect of using the 

Extended Kaiman is that the algorithm converges more quickly and easily than before. 

Therefore, the stopping criteria, Kc, can be lowered, producing relatively the same 

number of iterations, while allowing a tighter convergence parameter. For the Extended 

Kaiman algorithm, Kc was set to 10'8. 

3. Stricter Speed Limit 

As different geometries were simulated, I found that the original speed limit still 

allowed targets to "run away," i.e., have a velocity estimate which was too fast. 

Therefore, a modification to the limit on the velocity of the predicted track estimate was 

necessary. 

The stricter speed limit is implemented by first selecting the middle time scan 

estimate as the baseline. If this estimate has a speed in excess of 10 knots, then the 

velocity of the baseline is reduced to reflect a speed of 10 knots. Then the state estimates 

at both past and future times are generated from the adjusted baseline state with its new 
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refined velocity. These estimates are then used in the next batch of processing. Even 

with this stricter speed limit, the algorithm is still allowed to converge to a final track 

estimate with any velocity. 

4. Attribute Data 

The use of measurement attribute data was explored and added to the algorithm. 

This method assumes that a measure of target amplitude was available in addition to the 

range-bearing measurement. The measured amplitude is drawn from a Rayleigh 

distribution with specified mean, which has the form: 

f(a) = (a/a2)exp(-a2 /2a2), a>0 (3.25) 

The mean for this distribution is a^n 12 . For this research, targets and clutter are 

assigned different means. The clutter model is given a mean with a=l, and the target 

models have means with a>\. This data is included by multiplying the weights found in 

(Eqns. 3.1 & 3.17) by the Rayleigh distribution. Therefore, (Eqns. 3.1 & 3.17) become 

vv;r=f(«) p 2i;:r'
m: ow 2^Vdet(S,m) 

wl+1) = mp (3-27) 

respectively. This modification was only used in the simulations that are indicated in 

Chapter V. 

A block diagram with all of the modifications, except the attribute data, is shown 

in Figure 3.3. 
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Figure 3.3. Improved PMHT 

This concludes the layout of the PMHT algorithm, which is utilized in this 

research. In the next chapter, I will discuss the initialization routine that is used for this 

algorithm. 
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IV. TARGET STATE INITIALIZATION 

A. GENERAL DISCUSSION 

The initialization algorithm used in this research is of the N-of-N variety. That is, 

for the first N time scans, there must be N measurement points which meet the gating 

criteria. The PMHT algorithm is very sensitive to the initial estimates it is given. For 

small values of N, the initial heading can be extremely inaccurate, and then the algorithm 

is less likely to converge to the true track. Therefore, I have found that values of N > 5 

are necessary for the PMHT algorithm to perform reliably. 

B. THE N-of-N INITIALIZATION ALGORITHM 

There are two steps for this process when N > 3. The first step is a gating 

equation which eliminates all points which are not likely to be associated as a track. 

Then once a set of JV points has been designated as a new track, a least squares algorithm 

is used to fit the optimal track to these JV points. 

1. Gating 

As has been stated before, this research assumes that targets have a speed between 

2 and 10 knots. If the target velocity vector is known and two successive measurements 

(z, and z,+1) are obtained for the target, then the quantity 

X2 = (z,+1 -z,)T[R,+1 +R,r,(z,+1 -z,) (4.1) 
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has a non-central Chi-squared distribution, where z, and R, are the measured track 

position and measurement covariance matrix at time t. It was empirically demonstrated 

that for the target speeds, tracking ranges, and measurement errors used in this research, a 

cut-off of x2 < 50 kept all target associations. This cut-off produces an effective gate for 

2-of-2 association of approximately 75 square kilometers. A 3-of-3 case relies on a 

match (using the 2-of-2 algorithm) for the first and second measurements and the second 

and third measurements. Then a cut-off value for track formation was applied with 

■/; < 20. This gives an association probability for measurements derived from a real 

track of 0.9972. Higher order associations project the subsequent result into the future to 

determine likely measurements for the new association. At each projection for the next 

higher association, a match is performed and then a JC rejection. 

2. Least Squares Fit 

This initialization algorithm uses a least squares fit assuming a constant velocity 

target during the initialization period. Therefore, for the 3-of-3 case, the first three 

measurements are given by: 

z2„, = Cx2„, + e2r = C[<DxlB1 + wlBI] + e2r (4.2) 

Z3m=Cx3BI+e3r=C[<D(<Dxlm+wlBI) + w2)II] + e3r 

Since a straight, constant velocity target is assumed during the initialization, the process 

errors are set to zero (i.e., w,„,=0 for every /). Therefore, 
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r-              —i r-          —] 

Zl»l «Ir 

Z2m = Fx    + e2r 

_Z3m _ 6x1 -e3r. 

(4.3) 

where, 

F = 
H 
HO 
H<D<D 

where the covariance associated with the error vector is 

'2r 

"ir . 

[elr    e2r    e3r] 

R)r 0 0 

0 R2r 0 
0       0     R 3r. 

= 2, 

Therefore, the least squares estimate of xlm is given by: 

^[F^-'FJVS 

u\m 

u2m 

-T,m. 

and 

*3„ = ®*2„, = W*lm 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

since this gives the estimates for the position. For the associated state estimate 

covariance matrices, the following equations are used: 

Plm = [F^FfV^S^Vsä)7 (4.8) 

and 

P3m = ®?2m®T + Q = <K<DPlwOT + Q)$>
T
 + Q (4-9) 

25 



From this 3-of-3 case, it is straightforward to expand this in order to apply this process to 

the 5-of-5 case. These estimates and their associated covariance matrices are then used in 

the first batch of the PMHT algorithm. 
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V. RESULTS AND COMPARISONS 

A.       SIMULATIONS 

In this research, all of the comparisons are based on simulated data. Simulations 

were run for 30 time scans with the time between scans equal to 4 minutes. The 30 

range-bearing target measurements are generated using additive Gaussian noise, where 

the range standard deviation is 100 meters and the bearing standard deviation is 3 

degrees. An example of a simulated target run is shown in Figure 5.1. 

x104 

2.8 3.2        3.4        3.6        3.8 
x (meters) 

4.2        4.4 

x104 

Figure 5.1. Straight Track with Clutter 
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The solid line is the true track, and the "*" are the noisy measurements. The 

actual target velocity is 5 knots in all scenarios. The sensor is located at (0,0), so the 

target is moving predominantly in the cross range dimension at a range greater than 40 

kilometers. 

This example also depicts clutter points as circles. Clutter was generated in a 

uniform random fashion throughout the area of interest. For this example the clutter 

density is 1.67x10"2 clutter points per square kilometer, or in other words, there are five 

clutter points for each time scan. Clutter densities in this study were varied from 

3.33xl0'3 to 6.67xl0"2 clutter points per square kilometer. 

B. OTHER ALGORITHMS 

The MHT and PDAF algorithms were used as a benchmark to see how well the 

PMHT is performing. As was mentioned in Chapter I, both of these are established 

algorithms that are currently being used in tracking applications. The results from these 

algorithms were produced using the exact same scenarios as were used for the PMHT. 

The MHT and PDAF algorithms used are widely discussed in several different texts (e.g. 

Bar-Shalom and Li [Ref. 4], Blackman [Ref. 5]). 

C. RESULTS 

Three different target motion geometries were tested during this research. First, 

there is the basic straight line track as is depicted in Figure 5.1. Second, two crossing 
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tracks are used moving in straight lines with constant velocity. The third geometry is a 

track which makes a turn halfway through the simulation. 

The PMHT algorithm was first tested in each of the three geometries with a low 

clutter density (3.33x10"3 clutter points per square kilometer). Then it was confirmed 

with higher clutter densities and compared to the competing algorithms. 

1. Straight Line Target Motion 

Figure 5.2 displays a typical converged result produced by the PMHT algorithm. 
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Figure 5.2. Typical PMHT Result 
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On this single, straight line track, the circles are the actual target positions at each time 

increment, and the "*" symbols are the smoothed, converged estimates. The clutter 

density for this simulation is 3.33x10"3 clutter points per square kilometer. 

a. Low Clutter Density 

In order to quantify the results, mean distance errors were computed for 

the final target estimates at each time scan. The means were taken from 500 simulation 

runs. Figure 5.3 shows these mean distance errors for a straight line track in a clutter 

density of 3.33x10"3 clutter points per square kilometer. 

2000 

1800 

i    , , , ,  

r                              i      \ f 

1600 • 

1400 
■ 

di
st

an
ce

 (
m

) 

o
   

   
 o

 
O

   
   

   
  O

 

■ 

800 • 

600 

400 
^^^_^^ 

200  1 1— i       i       . 

0 20 40     60     80 
time (min) 

100 120 

Figure 5.3. Measurement and Estimate Errors (low clutter) 
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The lowest dotted line curve on the figure is the result of running the 

Kaiman Smoother using the actual target measurements (i.e., no clutter) and computing 

the mean distance errors over 1000 simulation runs. Therefore, this curve represents an 

approximate theoretical minimum for algorithm performance in the absence of clutter. 

The highest curve on the figure (the dotted line) is the average, noisy measurement error 

computed over 1000 runs. Clearly, an algorithm should be below this line to be 

considered as a viable option. The other line on the figure (the solid line) is the mean 

estimate error, which was produced by the algorithm. This is the average estimate error 

for 500 simulation runs at a clutter density of 3.33xl0"3 clutter points per square 

kilometer. 

In this simulation, the algorithm happened to produce estimate errors 

which have a better mean than the Kaiman Smoother without clutter. This can be true 

because of randomness, but in general will not happen. However, it does show that the 

PMHT algorithm is performing extremely well in low clutter, as would be expected. 

b.        Medium Clutter Density 

Figure 5.4 shows the results using the PMHT algorithm in a medium 

clutter density. The medium clutter density has five clutter points and a noisy 

measurement in the search area at each time scan. The clutter density is 1.67x10"2 clutter 

points per square kilometer. The solid line in Figure 5.4 displays the results from using 

the Extended Kaiman Smoother (EKS) in the algorithm. The broken line shows the 

results of using the conventional Kaiman Smoother in Cartesian Coordinates, using the 

debiased equations. As can be seen, the Extended Kaiman Smoother performed better. 
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Furthermore, the EKS performed the 500 simulations in only 204 minutes, whereas, the 

conventional Kaiman algorithm took 280 minutes. Therefore, from these results, I have 

determined for this application that it is better to use the EKS as opposed to the 

conventional Kaiman with the debiased equations. From here on, I will only show results 

from the EKS, but at other clutter densities, the results are similar between the 

conventional Kaiman and the EKS, as is shown here. 
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Figure 5.4. Comparison between EKS and Conventional Kaiman 

Figure 5.5 shows the comparison between the nearest neighbor (NN), 

PMHT. MHT, and PDAF. On this figure, there are four different lines—one for each of 

32 



the different algorithms. The solid line represents the PMHT; the solid line with circles is 

the nearest neighbor; the broken line is the MHT; and the dash-dot line is the PDAF. The 

important estimate error to compare is at the last time scan. This is the time that is 

current and is of importance. The PMHT will almost always have better errors for earlier 

time scans because of the smoothing process. For this clutter density, the PMHT is 

performing slightly better than the MHT and considerably better than the PDAF and the 

nearest neighbor. This is especially promising given the fact that the PMHT is less 

complicated and easier to compute than the MHT. Since the nearest neighbor algorithm 

is clearly not a viable option, it is not included on subsequent plots. 
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Figure 5.5. Comparison between NN, PMHT, PDAF, and MHT (medium clutter) 
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c. High Clutter Density 

For a high density clutter environment, a clutter density of 3.33x10"2 

clutter points per square kilometer was used. This meant that there were 10 clutter points 

and one noisy measurement in the search area per time scan. The results from this 

simulation are shown in Figure 5.6. 
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Figure 5.6. Comparison between PMHT, PDAF, and MHT (high clutter) 

These results show that the PMHT is performing better than the PDAF. 

but worse than the MHT for this clutter density. Therefore at this point, there is a cost 

trade-off versus the algorithm performance. The MHT performs the best, but it also is the 
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most expensive in terms of computations. On the other hand, the PDAF is producing the 

worst results, but it is the cheapest and fastest to calculate. 

2.        Turning Tracks 

For this scenario, the target moved in a straight line with constant speed for the 

first 60 minutes. At that point, the target made a 10 degree turn and then continued in a 

straight line for the remaining time. This target motion and a typical converged result 

produced by the PMHT algorithm are displayed in Figure 5.7. 
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Figure 5.7. Typical PMHT Results with a Turning Track 
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Again, the circles are the actual target positions at each time increment, and the 

'•*** symbols are the smoothed, converged estimates. The clutter density for this 

simulation is 3.33x10"3 clutter points per square kilometer. This result shows that the 

algorithm is not handling the turn quite as well as the straight line track; however, it is 

tracking nonetheless. For this 10 degree turn, the q factor was set to a value of one. 

a. Low Clutter Density 

Figure 5.8 displays the mean errors for a turning track for 500 simulation 

runs. The solid line represents the estimate errors at each time scan. 
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Figure 5.8. Measurement and Estimate Errors (low clutter) 
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The clutter density for this simulation is 3.33x10"3 clutter points per square 

kilometer. While the errors for this scenario are higher than for the straight track, they 

are still well below the measurement errors. 

b.        Medium Clutter Density 

Figure 5.9 shows the results of the PMHT algorithm on a turning track in a 

clutter density of 1.67x10"2 clutter points per square kilometer. These results show that 

the algorithm is still performing well even with the target making a turn in the presence 

of a medium clutter density. This further justifies the use of the q factor as a small, but 

positive value. For this scenario, q was set to a value of 10. 
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Figure 5.9. Measurement and Estimate Errors (medium clutter, 10° turn) 
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Figure 5.10 shows the results of the three algorithms estimating a turning 

track with a 90 degree turn instead of a 10 degree turn. Again, the solid line represents 

the PMHT; the broken line is the MHT; and the dash-dot line is the PDAF. The clutter 

density is still 1.67x10"2 clutter points per square kilometer. 
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Figure 5.10. Comparison between PMHT, PDAF, and MHT (90° turn) 

Here the q factor was set to a value of 300 in an effort to try and get the 

PMHT algorithm to track through the turn. However, with a turn this radical, the PMHT 

and PDAF algorithms were unable to maintain the target. The MHT results show that the 

target was lost at the turn, but was able to be reacquired after the turn. The MHT 
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algorithm has reacquisition logic inherent in the algorithm itself, while the other two 

algorithms do not have this process inherent to the basic tracking filter. Therefore, this 

result leads to the conclusion that the use of the PMHT will require that some sort of 

target re-initialization be implemented in a fielded system. A procedure for linking the 

new track with the old would also be required. 

c.        High Clutter Density 

Figure 5.11 shows the results of the PMHT tracking a target through a 10 

degree turn in a clutter density of 3.33x10"2 clutter points per square kilometer. 
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Figure 5.11. Measurement and Estimate Errors (high clutter, 10° turn) 
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These results confirm what was seen at the medium clutter density— 

namely that the PMHT algorithm is able to robustly follow a track as it makes small 

maneuvers. This justifies further using the small, but non-zero q factor value instead of 

setting it to zero, which would be the equivalent of using a least squares fit instead of a 

Kaiman filter or smoother. 

3. Crossing Tracks 

In this scenario, there are two targets in the simulation. Target one executes the 

same track that was used in the straight track from before. Target two executes a track 

which starts in the bottom left-hand corner of the figure and runs toward the upper right- 

hand corner. Therefore, this new track is predominantly in the cross bearing direction. 

These tracks along with typical converged results from the PMHT algorithm are shown in 

Figure 5.12. 

Again, the actual target positions are the circles, and the "*" symbols are the 

smoothed, converged estimates. The clutter density for this simulation is 3.33xlO"3 

clutter points per square kilometer. Initially, there were some problems with the 

algorithm tracking the different trajectories, but since the improved limit on velocity was 

implemented, this has not been a drawback. This typical result shows the effect of the 

greater uncertainty in the bearing dimension. Track one, which is predominantly moving 

in the cross-range direction, has a greater uncertainty along its axis of travel. On the 

other hand, track two, which is predominantly moving in the cross-bearing direction, has 

a greater uncertainty perpendicular to its axis of travel. 
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Figure 5.12. Typical PMHT Results with Crossing Tracks 
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a.        Low Clutter Density 

Figure 5.13 displays the results from the crossing track scenario with a low 

clutter density of 3.33x10"3 clutter points per square kilometer. The solid line shows the 

mean errors from track one, and the broken line is from track two. Again, the lowest 

dotted line represents the theoretical minimum, which was produced by running the 

Kaiman smoother with just the noisy measurements. The highest line is the average 

measurement error over 1000 simulations. These results are still below the measurement 

error, but significantly higher than the single track in a low clutter density. 
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Figure 5.13. Errors for Crossing Tracks (low clutter) 

One reason for this is the effect that each track has on the other one. The 

clutter has an equal probability of affecting the estimate to one side or the other, and. in 

general clutter will tend to have little bias effect on the track estimate. On the other 

hand, the measurements from the other track will tend to pull the estimate toward these 

measurements, causing a bias to one side. Since, in this low clutter density the clutter has 

minimal effect, this bias effect of the other track is clearly evident. Figure 5.14 shows 

this bias effect. This figure is the average track estimate, which is produced by the 

aleorithm over the 500 runs. 
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Figure 5.14. Average Track Estimate (low clutter) 

The true target tracks are shown as the solid lines, and the estimate 

average is displayed as the dotted lines. Track one is pulled downward, and track two is 

pulled up towards track one. In the next subsection, I will show how more clutter will 

dampen out this bias effect. 

b. Medium Clutter Density 

Figure 5.15 shows the results from the crossing track scenario in a medium 

clutter density of 1.67x10"2 clutter points per square kilometer. Once again, the solid line 

represents the mean errors from track one, and the broken line is from track two. 
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Figure 5.15. Errors for Crossing Tracks (medium clutter) 

Even though the clutter density is five times greater, these results are 

significantly better than the low clutter density case. This is due to the higher clutter 

density dampening out the bias caused by the two tracks. These results compare very 

closely to those obtained for the single straight track in a medium clutter density. 

Figure 5.16 shows the average track estimate for this scenario as was 

depicted in Figure 5.14 for the low clutter density. Again, the true target tracks are 

shown as the solid lines, and the estimate averages are displayed as the dotted lines. 

Indeed, the separate tracks show very little bias toward the other track in the simulation. 
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Figure 5.16. Average Track Estimate (medium clutter) 

c.        High Clutter Density 

Figure 5.17 shows the results from the crossing track scenario in a high 

clutter density. Again, the solid line displays the mean error from track one, and the 

broken line represents the mean errors from track two. The clutter density for this 

scenario is 3.33x10"2 clutter points per square kilometer. For this simulation, the errors 

are starting to get up close to the measurement errors, and for clutter densities higher than 

this, the errors begin to exceed the measurement errors. 
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Figure 5.17. Errors for Crossing Tracks (high clutter) 

Another observation from these results is the fact that track one's estimate 

is higher than that of track two. For the higher clutter densities, this was found to be the 

norm. The reason track one produces the higher estimate errors is due to the target 

motion being predominantly in the cross-range direction. Therefore, this is the reason 

track one was used for the majority of the simulations. 

4. Attribute Data 

The use of attribute data was researched to determine what level amplitude of 

target data, in relation to the clutter data amplitude, was necessary in order to improve the 
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performance of the PMHT algorithm. For this simulation, a very high clutter density of 

6.67xl0"2 clutter points per square kilometer was used. Figure 5.18 shows the results of 

the PMHT algorithm in this clutter density with and without attribute data. 
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Figure 5.18. Attribute Data Comparison (very high clutter) 

120 

The solid line represents the algorithm with the use of attribute data, and the 

broken line is the algorithm without it. For this simulation an attribute value of a = V10 

was necessary in order to get a noticeable improvement from the algorithm. As was 

described in Chapter III, this means that this value of a was used for the target 

measurements, and a value of a = 1 was used for the clutter measurements. For values 

47 



less than a = vTÖ , no clear advantage could be seen. The fact that a 1 OdB power 

advantage is needed for the target data in order to show an improvement is not very 

encouraging at this point. Given the findings of this research, a large amplitude 

separation would be necessary to produce any sort of real advantage using the attribute 

data. 

Attribute data was also utilized to see if it could lower the requirements for 

initialization. Figure 5.19 shows the effect of varying the initialization constant N, which 

is in A'-of-.Y. A 1 OdB power ratio is used throughout these simulations. 

1600 
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Figure 5.19. Mean Distance Errors with Attribute Data and Varying N 

48 



The solid line is the standard PMHT with no attribute data and N=5. The dotted 

line is the algorithm with attribute data and N=3, and the dash-dot line represents attribute 

data with N=5. The clutter density for these simulations is a high clutter density of 

3.33x10"2 clutter points per square kilometer. Here the attribute data with JV=3 is not as 

good as no attribute processing and N=5. However, attribute data with iV=5 shows 

superior results. Therefore, at higher clutter levels, it is not possible to reduce Wand 

make up the difference with lOdB of attribute information. 

49 



50 



VI. CONCLUSIONS 

A.       SUMMARY 

This research has explored the possible implementation and initialization of the 

PMHT algorithm. It has solved and improved many of the aspects of running the 

algorithm. This includes the development of an initialization routine, a clutter weight, a 

cut-off for very small value weights, processing in five-scan batches, a maximum 

allowable velocity of the initial state estimate, clutter weight model inflation, the use of 

the Extended Kaiman smoother, and the use of attribute data. 

The results from this research have shown that the PMHT algorithm is a viable 

player in the data association and tracking arena. It has been shown to outperform the 

PDAF in all of the scenarios studied here. Furthermore, it has proven to be superior to 

the MHT in low clutter densities, although it is not as good in the high clutter densities. 

The PMHT has also shown that it can track a target through a minor turn. Even though it 

will not track through a radical target maneuver, this is not a glaring weakness since most 

algorithms require special processing to track a target through a turn, as was discussed in 

Chapter V. 

Presently, the algorithm's greatest shortcoming is in the area of initialization. The 

requirement for five measurements to line up (N=5) is stringent, especially when the 

probability of detection is less than one. Unfortunately, the PMHT algorithm has proven 

to be quite sensitive to the initial estimates. In addition, the algorithm is also easily 
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modified to make use of attribute data. However, the current lOdB signal to noise ratio is 

rather high, and probably is not obtainable in the underwater sonar world. 

B.        FURTHER RESEARCH 

The PMHT algorithm has developed quickly since it was proposed by Streit and 

Luginbuhl in 1995. However, there are still several areas in which improvements and 

further research need to be addressed. Clearly, the initialization problem needs 

development, particularly in de-sensitizing the algorithm to the initial estimates. 

Another area for further research is the use of attribute data. The current use 

offers some promise, but more probability research needs to be done with the Rayleigh 

distribution in order to lower the lOdB signal to noise ratio. Furthermore, using attribute 

data during initialization needs to be studied more. 

The final area where more research is needed is the processing of the algorithm 

during radical turns and maneuvers. This has been done successfully with other tracking 

algorithms, but actual simulations with the PMHT algorithm in linking tracks together 

would be useful. Investigation of the requirements necessary for the new estimates after 

the turn would be important. 
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APPENDIX. MATLAB CODE 

This appendix contains the code which was used in Matlab 4.2c1 to simulate the 

PMHT algorithm. The first set of code is for the two crossing target scenario. The 

second set of code is for a straight track with attribute data. For the other scenarios, slight 

modifications were made to either of these programs. 

Crossing Tracks 

%Probabilistic Multi-Hypothesis Tracking (version 36) 
% thesis by Capt. Darin T. Dunham, USMC 
% advisor: Prof. R. Gary Hutchins, NPS 
% 
% two tracks with clutter— 
%   first two meas are one std error, 
%  the other meas are uniform clutter. 
% 
% Uses clutter tracking model. 
% 
% Tracks in Tstep scan increments. 
% 
% Uses attribute data for each measurement     NOT IMPLEMENTED 
% which is a random Rayleigh distribution. 
% 
% Tracks cross. 
% 
% Uses first 5 points to initialize. 
% 
% Uses an Extended Kaiman instead of debiased eqns. 
% 
% Computes the mean track to show bias of second track. 
% 

1 Matlab® copyright© 1984-94 The Math Works, Inc., All Rights Reserved, Version 4.2c, Nov. 23, 1994. 
The Math Works, Inc., 24 Prime Park Way, Natick, MA 01760. 
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clear 
tic 

%Constants 
M=3; 
N=5; 
Nt=2; 
Nc=10; 
T=30; 
Tstep=5; 
dt=4; 
1=100; 
sr=100; 
sth=pi/60; 
s=l; 
sc=l; 
q=l: 
mawi =308.66667; 
maxv2=308.66667; 
thr=10.5966; 
stop=le-6; 
J=500: 

%three models, two track, one clutter 
%number of points used to initialize 
%number of tracks 
%number of clutter points 
%number of scans 
%algorithm increment step size (change cwt) 
%in minutes 
%max number of iterations 
%std for range 
%std for bearing 
%std for attribute on a true target 
%std for attribute on clutter 
%Q coefficient 
%max allowable initial velocity for track 1 (10 knots) 
%max allowable initial velocity for track 2(10 knots) 
%threshold for 3 std 
%convergence stopping parameter 
%number of loops thru the simulation 

%Constant vectors 
c\vt=le-10*[le-2 le-2 1111]; %clutter model weight 

%Initiation for actual track (meters) 
Xlinit=[30200, 92.6, 30400, -123.46667]'; 
X2init=[30200, 92.6, 16078, 123.46667]'; 
Yl=zeros(4,T); 
Y2=zeros(4,T); 
Yl(:.l)=Xlinit; 
Y2(:,l)=X2init; 
Q=q*[(dtA3)/3 (dtA2)/2 0 0; (dtA2)/2 dt 0 0; 

0 0 (dtA3)/3 (dtA2)/2; 0 0 (dtA2)/2 dt]; 
R=[srA2 0; 0 sthA2]; 
A=[0 1 0 0; 000 0; 000 1:000 0]; 
C=[l 0 00; 00 1 0]; 
Phi=eye(4) + A*dt; 
invPhi=eye(4) - A*dt; 
fort=l:T-l, 

Yl(:,t+l)=Phi*Yl(:,t); 
Y2(:,t+l)=Phi*Y2(:,t); 
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end 
Ylpol=xy2polar(C*Yl); 
Y2pol=xy2polar(C*Y2); 

%Initialize error vectors 
errm=zeros(l,T); 
erre=zeros(l,T); 
errm2=zeros(l ,T); 
erre2=zeros(l,T); 
countl=0; 
count2=0; 

%initialize mean estimated track vectors 
Xlm=zeros(4,T); 
X2m=zeros(4,T); 

forj=l:J, 

j 

%Initialize tracker 
pl=0.2*ones(l,T); %pl(t)-prob that target 1 has a meas in time t 
p2=0.2*ones(l,T); 
p3=1.0*ones(l,T); 

%Generate range and bearing measurements 
Zlpol=Ylpol + sqrt(R)*randn(2,T); 
Z2pol=Y2pol + sqrt(R)*randn(2,T); 

%Convert measurements to cartesian using Debiased Eqns. 
mu=l - (exp(-sthA2) - exp(-(sthA2)/2)); 
Zl=(mu*eye(2))*polar2xy(Zlpol); 
Z2=(mu*eye(2))*polar2xy(Z2pol); 
Rs=[convert(Zlpol,sr,sth); convert(Z2pol,sr,sth)]; 

%Generate attribute data for targets 
Z=[Zlpol; raylrnd(s,l,T); Z2pol; raylrnd(s,l,T)]; 

%Generate clutter measurements 
form=l:Nc, 

Zipol=xy2polar([1.5e4*rand(l,T)+2.8e4;2e4*rand(l,T)+1.5e4]); 
Z=[Z; Zipol; raylrnd(sc,l,T)]; 

end 
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%Build Zbar 
Zbarl=Z(l,:); 
Zbar2=Z(2,:); 
forv=4:3:3*(Nt+Nc), 

Zbarl=[Zbarl;Z(v,:)]; 
Zbar2=[Zbar2;Z(v+l,:)]; 

end 

%InitializeXl and X2 
Xl=zeros(4,T); 
F=[C; C*Phi; C*(PhiA2); C*(PhiA3); C*(PhiA4)]; 
Rl=form(Rs(l:3,l)); 
R2=form(Rs( 1:3,2)); 
R3=form(Rs( 1:3,3)); 
R4=form(Rs( 1:3,4)): 
R5=form(Rs(l:3,5)); 
Sig=[Rl zeros(2.8); zeros(2,2) R2 zeros(2,6); 

zeros(2.4) R3 zeros(2,4); zeros(2,6) R4 zeros(2,2); zeros(2,8) R5]; 
invSig=inv(Sig); 
K=inv(F'*invSig*F)*F'*invSig; 
Zbar=[Zl(:.l): Zl(:,2): Zl(:,3); Zl(:,4); Zl(:,5)]; 
Xl(:.l)=K*Zbar; 
Pvl(:.2)=reshape((K*Sig*K'),16,l); 

X2=zeros(4,T); 
Rl=form(Rs(4:6,l)); 
R2=form(Rs(4:6,2)); 
R3=form(Rs(4:6,3)); 
R4=form(Rs(4:6,4)): 
R5=form(Rs(4:6,5)): 
Sig=[Rl zeros(2.8); zeros(2,2) R2 zeros(2,6); 

zeros(2,4) R3 zeros(2,4); zeros(2,6) R4 zeros(2,2); zeros(2,8) R5]; 
invSig=inv(Sig); 
K=inv(F,*invSig*F)*F*invSie; 
Zbar=[Z2(:.l): Z2(:,2); Z2(:,3)"; Z2(:,4); Z2(:.5)]; 
X2(:.l)=K*Zbar; 
Pv2(:,2)=reshape((K*Sig*K'), 16,1); 

%Limit initial velocity 
initvell=sqrt(Xl(2,l)A2 + X1(4,1)A2); 
initvel2=sqrt(X2(2,l)A2 + X2(4,1)A2); 
vfactorl=initvell/maxvl; 
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vfactor2=initvel2/maxv2; 
ifvfactorl>l, 

Xl(2,l)=Xl(2,l)/vfactorl; 
Xl(4,l)=Xl(4,l)/vfactorl; 

end 
if vfactor2>l, 

X2(2,1 )=X2(2,1 )/vfactor2; 
X2(4,1 )=X2(4,1 )/vfactor2; 

end 

%Predict initial estimate for first five points 
for t=2:5, 

Xl(:,t)=Phi*Xl(:,t-l); 
X2(:,t)=Phi*X2(:,t-l); 
Pvl(:,2*t)=reshape((Phi*formP(Pvl(:,2*(t-l)))*Phi' + Q),16,l); 
Pv2(:,2*t)=reshape((Phi*formP(Pv2(:,2*(t-l)))*Phi' + Q),16,l); 

end 
U1=X1(:,1:5); 
U2=X2(:,1:5); 

for Ti=5:Tstep:T, 

%Begin iterations 
fori=l:I, 

%store last target meas prob 
plp=pl; 
p2p=p2; 
p3p=p3; 

fort=l:Ti, 
n(t)=Nt+Nc; 

%compute weights 
forr=l:n(t), 

zt-Z((3*r-2):(3*r-l),t)-xy2polar(C*Xl(:,t)); 
Ck=Cekf(Xl(:,t)); 
Sig=Ck*reshape(Pvl(:,2*t),4,4)*Ck' + R; 
den=2*pi* sqrt(det(Sig)); 
wl(r,t)=exp(-0.5*zt'*inv(Sig)*zt)/den; 
ifzt'*inv(Sig)*zt>thr, 

wl(r,t)=le-20; 
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end 

zt=Z((3*r-2):(3*r-l),t)-xy2polar(C*X2(:,t)); 
Ck=Cekf(X2(:,t)); 
Sig=Ck*reshape(Pv2(:,2*t),4,4)*Ck' + R; 
den=2*pi*sqrt(det(Sig)); 
w2(r,t)=exp(-0.5*zt'*inv(Sig)*zt)/den; 
ifzt'*inv(Sig)*zt>thr, 

w2(r?t)=le-20; 
end 

w3(r,t)=cwt(Ti/Tstep); 
suml =(p 1 (t)* wl (r,t)+p2(t)* w2(r,t)+p3(t)*w3(r,t)); 
wl(r,t)=wl(r,t)/suml; 
w2(rrt)=w2(r,t)/suml; 
w3(r.t)=w3(r,t)/suml; 

end 

%compute mean meas weight for target m at time t 
wl m(t)=(l /n(t))*sum(wl (:"t)); 
w2m(t)=(l/n(t))*sum(w2(:,t)); 
w3m(t)=(l/n(t))*sum(w3(:,t)); 

%update target meas prob 
pl(t)=wlm(t)*pl(t); 
p2(t)=\v2m(t)*p2(t); 
p3(t)=w3m(t)*p3(t); 

%compute target meas centroid 
Wl=wl(:,t)/(n(t)*wlm(t)); 
W2=w2(:,t)/(n(t)*w2m(t)); 
Zlhat(:.t)=[Wl'*Zbarl(:,t);Wl,*Zbar2(:,t)]; 
Z2hat(:!t)=[W2'*Zbarl(:,t); W2'*Zbar2(:,t)]; 

end 

%run Extended Kaiman smoother 
ylhat(:fl)=Xl(:,l): 
y2hat(:;l)=X2(:,l); 

%forward recursion 
fort=l:Ti-l? 

Pt=Phi*reshape(Pvl(:,2*t),4,4)*Phi' + Q; 
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Pvl(:,2*t+l)=Pt(:); 
ylhat(:,t+l)=Phi*ylhat(:,t); 
k=n(t+l)*pl(t+l); 
Ck=Cekf(ylhat(:,t+l)); 
G=k*Pt*Ck'*inv(k*Ck*Pt*Ck' + R); 
Pvl(:,2*t+2)=reshape((Pt-G*Ck*Pt),16,l); 
ylhat(:,t+l)=ylhat(:,t+l)+G*(Zlhat(:,t+l)-xy2polar(C*ylhat(:,t+l))); 

Pt=Phi*reshape(Pv2(:,2*t),4,4)*Phi' + Q; 
Pv2(:,2*t+l)=Pt(:); 
y2hat(:,t+l)=Phi*y2hat(:,t); 
k=n(t+l)*p2(t+l); 
Ck=Cekf(y2hat(:,t+l)); 
G=k*Pt*Ck'*inv(k*Ck*Pt*Ck' + R); 
Pv2(:,2*t+2)=reshape((Pt-G*Ck*Pt),16,l); 
y2hat(:,t+l)=y2hat(:,t+l)+G*(Z2hat(:,t+l)-xy2polar(C*y2hat(:,t+l))); 

end 
Xl(:,Ti)=ylhat(:,Ti); 
X2(:,Ti)=y2hat(:,Ti); 

%backward recursion 
fort=Ti-l:-l:l, 

Ptt=reshape(Pvl (:,2*t),4,4); 
invPt=inv(reshape(Pvl (:,2*t+l ),4,4)); 
Xl(:,t)=ylhat(:,t)+Ptt*Phi'*invPt*(Xl(:,t+l)-Phi*ylhat(:,t)); 

Ptt=reshape(Pv2(:,2*t),4,4); 
invPt=inv(reshape(Pv2(:,2*t+l),4,4)); 
X2(:,t)=y2hat(:,t)+Ptt*Phi'*invPt*(X2(:,t+l)-Phi*y2hat(:,t)); 

end 

%check for convergence 
diff=sum(abs(pl-plp))+sum(abs(p2-p2p))+sum(abs(p3-p3p)); 
if diff<stop, 

break 
end 

end 
i 

%plot track output 
figure(l) 
plot(Yl(l,l:Ti),Yl(3,l:Ti),Xl(l,l:Ti),Xl(3,l:Ti),Y2(l,l:Ti),. 
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Y2(3,1 :Ti),X2( 1,1 :Ti),X2(3,1 :Ti)) 
axis('equal'), title('Tracking Algorithm Output') 
xlabel('x (meters)'), ylabel('y (meters)') 

%Predict for next Tstep points if necessary 
ifTi<T. 

mid=floor(Ti/2); 
initvell=sqrt(Xl(2;mid)A2 + Xl(4,mid)A2); 
initvel2=sqrt(X2(2;mid)A2 + X2(4,mid)A2); 
vfactorl=initveIl/maxvl; 
vfactor2=init\'el2/maxv2; 
if vfactorl>l, 

X1 (2,mid)=X 1 (2,mid)/vfactor 1; 
Xl(4,mid)=Xl(4,mid)/vfactorl; 

end 
if vfactor2>l, 

X2(2,mid)=X2(2?mid)/vfactor2; 
X2(4;mid)=X2(4,mid)/vfactor2; 

end 
for t=mid+l :Ti+Tstep, 

Xl(:,t)=Phi*Xl(:,t-l); 
Pvl(:;2*t)=reshape((Phi*reshape(Pvl(:,2*(t-l)),4,4)*Phi'+Q),16,l); 
X2(:.t)=Phi*X2(:,t-l); 
Pv2(:f2*t)=reshape((Phi*reshape(Pv2(:,2*(t-l)),4,4)*Phi'+Q),16?l); 

end 
fort=mid-l:-l:l, 

Xl(:?t)=invPhi*Xl(::t+l); 
X2(:.t)=invPhi*X2(:,t+l); 

end 
end 

end 

%update measurement & estimate errors for track 1 
errx=Yl(l.:)-Zl(l.:); 
erry=Yl(3,:)-Zl(2,:); 
enm=sqrt(errx.A2 + erry.A2)./J + errtn; 
errx=Yl(L:)-Xl(l,:); 
ern-=Yl(3,:)-Xl(3,:): 
errej=sqrt(errx.A2 + erry.A2); 
erre=errej./J + erre; 
ifmax(errej)>2000, 

count l=count 1+1: 
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end 

%update measurement & estimate errors for track 2 
errx=Y2(l,:)-Z2(l,:); 
erry=Y2(3,:)-Z2(2,:); 
errm2=sqrt(errx.A2 + erry.A2)./J + errm2; 
errx=Y2(l,:)-X2(l,:); 
erry=Y2(3,:)-X2(3,:); 
errej=sqrt(errx.A2 + erry.A2); 
erre2=errej./J + erre2; 
if max(errej) > 2000, 

count2=count2+l; 
end 

%update mean estimated tracks 
Xlm=Xlm + Xl./J; 
X2m=X2m + X2./J; 

end 

%plot errors 
figure(2) 
load kserror 
plot(l :T,errm,l :T,erre,l :T,errm2,l :T,erre2,l :T,errl(l :T),1 :T,err2(l :T)) 
title('Measurement Error & Estimate Error, over 100 runs') 
xlabel('time'), ylabel('distance (m)') 

figure(3) 
plot(Yl(l,l:T),Yl(3,l:T),Xlm(l,l:T),Xlm(3,l:T),Y2(l,l:T),... 
Y2(3,1 :T),X2m( 1,1 :T),X2m(3,1 :T)) 
axis('equal'), title('Tracking Algorithm Output') 
xlabel('x (meters)'), ylabel('y (meters)') 

time=toc/60; 
[time count 1 count2] 

Attribute Data 

%Probabilistic Multi-Hypothesis Tracking (version 35) 
% thesis by Capt. Darin T. Dunham, USMC 
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0/ 70 advisor: Prof. R. Gary Hutchins, NPS 

% 
% 

0' 70 

0/ 70 

% 
% 
0/ 70 

0/ 70 

% 

one track with clutter- 
first meas is one std error, 
the other meas are uniform clutter. 

Uses clutter tracking model. 

Tracks in Tstep scan increments. 

Uses attribute data for each measurement 
which is a random Rayleigh distribution. 

Uses first 5 points to initialize. 

Uses an Extended Kaiman instead of debiased eqns. 

%clear 
tic 

%Constants 
M=2: 
N=5: 
Nt=l: 
Nc=20: 
T=30; 
Tstep=5; 
dt=4; 
1=100; 
sr=100; 
sth=pi/60; 
%s=sqrt(10); 
sc=l: 

q=i;' 
maxv=308.66667; 
thr=10.5966: 
stop=le-8; 
J=500: 

%two models 
%number of points used to initialize 
%number of tracks 
%number of clutter points 
%number of scans 
%algorithm increment step size 
%in minutes 
%max number of iterations 
%std for range 
%std for bearing 
%std for attribute on a true target 
%std for attribute on clutter 
%Q coefficient 
%max allowable predict velocity (10 knots) 
%threshold for 3 std 
%convergence value for Pi 
%number of loops thru the simulation 

%Constant vectors 
cwt=le-10*[le-2 le-2 1111]; %clutter model weicht 
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%initiation for actual track (meters) 
Xlinit=[30200, 92.6, 30400, -123.46667]'; 
%Xlinit=[30200, 92.6, 16078, 123.46667]'; 
Yl=zeros(4,T); 
Yl(:,l)=Xlinit; 
C=[l 0 0 0; 0 0 1 0]; 
Q=q*[(dtA3)/3 (dtA2)/2 0 0; (dtA2)/2 dt 0 0; 

0 0 (dtA3)/3 (dtA2)/2; 0 0 (dtA2)/2 dt]; 
R=[srA2 0; 0 sthA2]; 
A=[0 100;0000;000 1;0000]; 
Phi=eye(4) + A*dt; 
invPhi=eye(4) - A*dt; 
fort=l:T-l, 

Yl(:,t+l)=Phi*Yl(:,t); 
end 
Ylpol=xy2polar(C*Yl); 
errm=zeros(l,T); 
erre=zeros(l,T); 
count=0; 

%Loop through simulation J times*************************************** 
forj=l:J, 

j 

%Initialize tracker 
pl=0.2*ones(l,T);   %pl(t)-prob that tar 1 has a meas in time t 
p2=1.0*ones(l,T); 

%Generate range and bearing measurements 
Zlpol=Ylpol + sqrt(R)*randn(2,T); 

%Convert measurements to cartesian using Debiased Eqns. 
mu=l - (exp(-sthA2) - exp(-(sthA2)/2)); 
Zl=(mu*eye(2))*(polar2xy(Zlpol)); 
Rs=convert(Z 1 pol,sr, sth); 

%Generate attribute data for target & measurement covariance 
Z=[Zlpol; raylrnd(s,l,T)]; 

%Generate clutter measurements 
form=l:Nc, 

Zipol=xy2polar([l.5e4*rand(l,T)+2.8e4; 2e4*rand(l,T)+1.5e4]); 
Z=[Z; Zipol; raylrnd(sc,l,T)]; 
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end 

%Build Zbar 
Zbarl=Z(l,:): 
Zbar2=Z(2?:); 
forv=4:3:3*(Nt+Nc), 

Zbarl=[Zbarl;Z(v,:)]; 
Zbar2=[Zbar2;Z(v+l,:)]; 

end 

Reinitialize X 
Xl=zeros(4,T); 
F=[C; C*Phi; C*(PhiA2); C*(PhiA3); C*(PhiA4)]; 
Rl=form(Rs(:,!)); 
R2=form(Rs(:.2)); 
R3=form(Rs(:.3)); 
R4=form(Rs(:?4)); 
R5=form(Rs(:?5)); 
Sig=[Rl zeros(2?8); zeros(2,2) R2 zeros(2,6); 

zeros(2,4) R3 zeros(2,4); zeros(2,6) R4 zeros(2,2); zeros(2,8) R5]; 
invSig=inv(Sig); 
K=inv(F'*invSig*F)*F'*invSig; 
Zbar=[Zl(:.l); Zl(:,2); Zl(:,3); Zl(:,4); Zl(:,5)]; 
Xl(:.l)=K*Zbar; 
Pv(:f2)=reshape((K*Sig*K'),16sl); 

%Limit initial velocity 
initvel=sqrt(Xl(2;l)

A2 + X1(4,1)A2); 
vfactor=initvel/maxv; 
if vfactor>l, 

Xl(2.1)=Xl(2.1)/vfactor; 
Xl(4,l)=Xl(4,l)/vfactor; 

end 

%Predict initial estimate for first five points 
fort=2:5. 

Xl(:rt)=Phi*Xl(:,t-l); 
Pv(:,2*t)=reshape((Phi*formP(Pv(:,2*(t-l)))*Phi' + Q),16,l); 

end 
Ü1=X1(:.1:5); 

%Track in Tstep scan increments************************************* 
for Ti=5:Tstep:T. 
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%Begin iterations 
fori=l:I, 

%store last target meas prob 
plp=pl; 
p2p=p2; 

fort=l:Ti, 
n(t)=Nt+Nc; 

%compute weights 
forr=l:n(t), 

zt=Z((3*r-2):(3*r-l),t)-xy2polar(C*Xl(:,t)); 
Ck=Cekf(Xl(:,t)); 
Sig=Ck*reshape(Pv(:,2*t),4,4)*Ck' + R; 
den=2*pi*sqrt(det(Sig)); 
wl(r,t)=raylpdf(Z(3*r,t),s)*exp(-0.5*zt'*inv(Sig)*zt)/den; 
ifzt'*inv(Sig)*zt>thr, 

wl(r,t)=le-20; 
end 
w2(r,t)=raylpdf(Z(3*r,t),sc)*cwt(Ti/Tstep); 
suml =(p 1 (t)* wl (r,t)+p2(t)* w2(r,t)); 
wl (r,t)=wl (r,t)/suml; 
w2(r,t)=w2(r,t)/suml; 

end 

%compute mean meas weight for target m at time t 
wlm(t)=(l/n(t))*sum(wl(:,t)); 
w2m(t)=(l/n(t))*sum(w2(:,t)); 

%update target meas prob 
pl(t)=wlm(t)*pl(t); 
p2(t)=w2m(t)*p2(t); 

%compute target meas centroid 
W=wl(:,t)/(n(t)*wlm(t)); 
Zhat(:,t)=[W'*Zbarl(:,t);W'*Zbar2(:,t)]; 

end 

%run Extended Kaiman smoother 
yhat(:,l)=Xl(:,l); 
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%for\vard recursion 
fort=l:Ti-l, 

Pt=Phi*reshape(Pv(:,2*t),4,4)*Phi' + Q; 
Pv(:,2*t+l)=Pt(:); 
yhat(:.t+l)=Phi*yhat(:,t); 
k=n(t+l)*pl(t+l); 
Ck=Cekf(yhat(:,t+l)); 
G=k*Pt*Ck'*inv(k*Ck*Pt*Ck' + R); 
Pv(:,2*t+2)=reshape((Pt-G*Ck*Pt),16,l); 
yhat(:,t+l)=>'hat(:,t+l)+G*(Zhat(:,t+l)-xy2polar(C*yhat(:,t+l))); 

end 
Xl(:,Ti)=yhat(:,Ti); 

%backward recursion 
fort=Ti-l:-l:l, 

Ptt=reshape(Pv(:,2*t).4,4); 
invPt=inv(reshape(Pv(:,2*t+l),4,4)); 
Xl(:;t)=yhat(:rt)+Ptt+Phi'*invPt*(Xl(:,t+l)-Phi*yhat(:,t)); 

end 

%check for convergence 
diff=sum(abs(p 1 -p 1 p))+sum(abs(p2-p2p)); 
if diff < stop, 

break 
end 

end 
U2=Xl(:.l:Ti); 
i 

%plot track output 
figure(l) 
plot(Yl(l,l:Ti),Yl(3,l:Ti)}Xl(l,l:Ti),Xl(3,l:Ti)) 
title('Tracking Algorithm Output') 
xlabel('x (meters)'), ylabel('y (meters)') 

%Predict for next five points if necessary 
ifTi<T, 

mid=floor(Ti/2); 
initvel=sqrt(Xl(2,mid)A2 + Xl(4,mid)A2); 
vfactor=initvel/maxv; 
if vfactor>l. 

66 



X1 (2,mid)=X 1 (2,mid)/vfactor; 
X1 (4,mid)=X 1 (4,mid)/vfactor; 

end 
for t=mid+l :Ti+Tstep, 

Xl(:,t)=Phi*Xl(:,t-l); 
Pv(:,2*t)=reshape((Phi*reshape(Pv(:,2*(t-l)),4,4)*Phi' + Q),16,l); 

end 
fort=mid-l:-l:l, 

Xl(:,t)=invPhi*Xl(:,t+l); 
end 

end 

end 

errx=Yl(l,:)-Zl(l,:); 
erry=Yl(3,:)-Zl(2,:); 
errm=sqrt(errx.A2 + erry.A2)./J + errm; 
errx=Yl(l,:)-Xl(l,:); 
eny=Yl(3,:)-Xl(3,:); 
errej=sqrt(errx.A2 + erry.A2); 
erre=errej./J + erre; 
ifmax(errej)>2000, 

count=count+l; 
end 

end 
%Fnd J times IQQTI*************************************************** 

%plot errors 
figure(2) 
load kserror 
plot(l :T,erre,l :T,errl(l :T),1 :T,err2(l :T)) 
title('Measurement Error & Estimate Error, over 100 runs') 
xlabel('time'), ylabel('distance (m)') 

vel=sqrt(Ul(2,l)A2 + U1(4,1)A2); 
anglediff=(180/pi)*(atan2(Ul(4,l),Ul(2Jl))-atan2(Yl(4,l),Yl(2,l))); 
time=toc/60; 
[vel anglediff time count] 
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